Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 14 (2004) 1003-1005

Pyrazino[1,2-a]indoles as novel high-affinity and selective imidazoline I₂ receptor ligands

Jean Chang-Fong,^a Robin J. Tyacke,^b Alice Lau,^b Julie Westaway,^b Alan L. Hudson^b and Richard A. Glennon^{a,*}

^aDepartment of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540 USA

^bPsychopharmacology Unit, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK

Received 7 November 2003; accepted 1 December 2003

Abstract—1,2,3,4-Tetrahydropyrazino[1,2-a]indoles are described as a novel class of I_2 imidazoline receptor ligands. In particular, 8-methoxy-1,2,3,4-tetrahydropyrazino[1,2-a]indole (8-OMe THPI; **3c**) binds with high affinity at I_2 imidazoline receptors (K_i = 6.2 nM) and with exceptional (\geq 1000-fold) selectivity relative to its affinity for I_1 imidazoline receptors, α_2 adrenergic receptors, and 5-HT_{2A} and 5-HT_{2C} serotonin receptors. © 2003 Elsevier Ltd. All rights reserved.

Imidazoline receptors have been categorized as belonging to at least two different types: I_1 and I_2 receptors. $^{1-3}$ Agents binding at I_2 receptors usually possess an imidazoline moiety, and typically suffer from a lack of selectivity for I_2 receptors versus I_1 and/or α_2 -adrenergic receptors. Only recently have I_2 ligands with appreciable selectivity become available. $^{1-5}$ One of the most widely used I_2 ligands is 2-(2-benzofuranyl)-2-imidazoline (2-BFI). This agent binds at I_2 receptors with high affinity (K_i <10 nM), displays modest selectivity versus I_1 receptors (I_1 K_i ca. 70 nM) and low affinity for α_2 -adrenergic receptors (K_i ca. 4000 nM). Its tritiated version has been introduced as a radioligand. 6,7

Given the previous unavailability of selective agents, it has been difficult to identify potential physiological or therapeutic roles for I_2 receptors. Some have suggested that imidazoline receptors might represent regulatory binding sites on monoamine oxidase (MAO), but this issue is controversial.^{2,3} Evidence also suggests that I_2 receptors might be involved in opioid-induced antinociception, neuroprotection, depression and other CNS disorders.^{1–3}

 β -Carbolines represent a new class of imidazoline receptor ligands and several have been demonstrated to

bind with K_i values of < 10 nM.^{8,9} Fully unsaturated β -carbolines seem to bind both at I_1 and I_2 receptors whereas 3,4-dihydro and 1,2,3,4-tetrahydro-β-carbolines are more selective for I2 receptors.9 We have recently reported on the structure–affinity relationships for the binding of β -carboline analogues at imidazoline I₂ receptors. Compound 1, for example, binds at I₂ receptors with high affinity ($K_i = 9.4 \text{ nM}$) and displays reasonable selectivity over I_1 ($K_i = 9.910$ nM) and α_2 adrenergic ($K_i = 1600$ nM) receptors. 9 A problem with β-carbolines, not common to the imidazolines class of I₂ ligands, is that they typically bind at 5-HT_{2A} receptors; 10 but, 1 shows low affinity (5-HT_{2A} K_i = 3,800 nM) for these receptors. 11 Compound 2 also binds with high affinity at I_2 receptors $(K_i = 7.3 \text{ nM})^{12}$ but displays reduced selectivity that is likely due to the presence of the fused imidazoline ring. It was reasoned that an intact piperidine ring might not be necessary for I₂ binding and that 3a, which represents an analogue of 2 lacking both the imidazoline ring and a portion of the piperidine ring, might retain high affinity but display enhanced selectivity. Hence, we prepared and evaluated compound 3a with the expectation that it would bind at I₂ receptors.

^{*}Corresponding author. Tel.: +1-804-828-8487; fax: +1-804-828-7404; e-mail: glennon@hsc.vcu.edu

Table 1. Radioligand binding data for compounds 3 and 4^a

	R	I ₂ ; K _i , nM (±SEM)	α_2 -Adrenergic K_i , nM (\pm SEM)
3a 3b 3c 4	H 7-OCH ₃ 8-OCH ₃	6.5 (±5.4) 250 (±27) 6.2 (±3.3) 6790 (±3270)	$516 (\pm 210)$ $4510 (\pm 1330)$ $9550 (\pm 1070)$ $13,400 (\pm 1230)$

^a Values are means of at least three experiments using binding assays as previously reported.^{9,14} Compounds were synthesized following literature procedures.¹³

Figure 1. Possible structural relationships between 1,2,3,4-tetrahydro- β -carboline (1), 1,2,3,4-tetrahydropyrazino[1,2-a]indole (3a), and a hydrid structure 4.

Tetrahydropyrazino[1,2-a]indole **3a**, prepared as previously described, ¹³ was found to bind at I₂ receptors with high affinity (I₂ K_i =6.5 nM; Table 1). Compound **3a** also showed nearly 100-fold selectivity for I₂ versus α_2 -adrenergic receptors (K_i =516 nM).

It quickly became apparent, although 3a binds with high affinity, that it might not bind as initially envisioned. That is, 3a might also be viewed as a β -carboline analogue where the indolic nitrogen atom has been moved from the β -carboline 9-position to a ring-fusion position (Fig. 1).

One means to test this hypothesis was to re-incorporate the indolic nitrogen atom to afford 4. However, 4 was found to bind with >1000-fold reduced affinity at I_2 receptors (K_i =6,790 nM). The low affinity of 4 suggested that 3a might not bind in the same manner as 1 (as shown in Fig. 1). Alternatively, I_2 receptors might not accommodate the hybridization state of the added nitrogen atom of 4.

Another study to determine how 3a might bind relative to 1 was to compare several methoxy-substituted derivatives. Introduction of a methoxy group at the 7-position (i.e., position B; Table 2) of 3,4-dihydro-βcarbolines and 1,2,3,4-tetrahydro-β-carbolines has little effect on I2 affinity compared to the parent unsubstituted compounds. However, a methoxy group at the 6-position (i.e., position A; Table 2) is not as well tolerated. In the pyrazinoindole series, incorporation of a methoxy group at the 8-position (position A) had no effect on affinity whereas incorporation at the 7-position (position B) resulted in reduced affinity. On the basis of these comparisons, it is concluded that the pyrazinoindoles 3 (or at least compound 3c) likely bind(s), relative to compound 1, at I₂ receptors as shown in Figure 1. Apparently, the added nitrogen atom of 4 accounts for its reduced affinity.

Table 2. Comparative I_2 radioligand binding data for three series of compounds (from left to right: 3,4-dihydro-β-carbolines, 1,2,3,4-tetra-hydro-β-carbolines, and 1,2,3,4-tetrahydropyrazino[1,2-a]indoles)^a

	I_2 ; K_i , nM		
Н	7.3	9.4	6.5
A-OCH ₃	480	1640	6.2
B- OCH ₃	18	12	250

^a Binding data for the β-carboline derivatives were reported earlier and are included only for comparison. Data for the pyrazinoindoles are from Table 1.

Compound **3c** (8-OMe THPI; K_i = 6.2 nM) binds at I_2 receptors with high affinity and with > 1000-selectivity over α_2 -adrenergic receptors. It was also found that **3c** (I_1 IC₅₀ = 8280 ± 340 nM) binds with > 1000-fold selectivity over I_1 receptors. Unlike many β -carbolines, **3c** displays low affinity for 5-HT_{2A} (K_i = 5,830 nM) and 5-HT_{2C} (K_i = 9,930 nM) serotonin receptors, I_1 making it a rather selective I_2 ligand. Future studies are planned to further characterize the pharmacology of **3c**, and to utilize **3c** as a template for the development of novel I_2 ligands.

Acknowledgements

J.C.-F. was supported in part by DA01642.

References and notes

- Parini, A.; Moudanos, C. G.; Pizzinat, N.; Lanier, S. M. Trends Pharmacol. Sci. 1996, 17, 13.
- Eglen, R. M.; Hudson, A. L.; Kendall, D. A.; Nutt, D. J.; Morgan, N. G.; Wilson, V. G.; Dillon, M. P. Trends Pharmacol. Sci. 1998, 19, 381.
- 3. Boronat, M. A.; Olmos, G.; Garcia-Sevilla, J. A. Ann. N.Y. Acad. Sci. 1999, 881, 359.
- Anatassiadou, M.; Danoun, S.; Crane, L.; Baziard-Mouysset, G.; Payard, M.; Caignerd, D.-H.; Rettori, M.-C.; Renard, P. Bioorg. Med. Chem. 2001, 9, 585.
- Gentili, F.; Bousquet, P.; Brasili, L.; Dontenwill, M.; Feldman, J.; Ghelfi, F.; Giannella, M.; Piergentili, A.; Quaglia, W.; Pigini, M. J. Med. Chem. 2003, 46, 2169.
- Lione, L. A.; Nutt, D. J.; Hudson, A. L. Eur. J. Pharmacol. 1996, 304, 221.
- 7. Alemany, R.; Olmos, G.; Garcia-Sevilla, J. A. Naunyn Schmiedeberg's Arch. Pharmacol. 1997, 356, 39.
- Hudson, A. L.; Price, R.; Tyacke, R. J.; Lalies, M. D.; Parker, C. A.; Nutt, D. J. Br. J. Pharmacol. 1999, 126, 2P.
- Husbands, S. M.; Glennon, R. A.; Gorgerat, S.; Gough, R.; Tyacke, R.; Crosby, J.; Nutt, D. J.; Lewis, J. W.; Hudson, A. L. Drug Alcohol Depend. 2001, 64, 203.
- Glennon, R. A.; Dukat, M.; Grella, B.; Hong, S.-S.; Costantino, L.; Teitler, M.; Smith, C.; Egan, C.; Davis, K.; Mattson, M. V. Drug Alcohol Depend. 2000, 60, 121.
- 11. Grella, B.; Teitler, M.; Smith, C.; Herrick-Davis, K.; Glennon, R. A. Bioorg. Med. Chem. Lett. 2003, 13, 4421.

- Glennon, R. A.; Grella, B.; Tyacke, R. J.; Lau, A.; Westaway, J.; Hudson, A. L. *Bioorg. Med. Chem. Lett.* 2004, 14, preceding paper in this issue. doi:10.1016/j.bmcl.2003.11.078.
- Chang-Fong, J.; Addo, J.; Dukat, M.; Smith, C.; Mitchell, N. A.; Herrick-Davis, K.; Teitler, M.; Glennon, R. A. Bioorg. Med. Chem. Lett. 2002, 12, 155.
- 14. Crude P2 membranes were prepared from rat (male, Wistar ~250 g) whole brains and kidneys, I₁, I₂ and α₂-adrenoceptor competition binding was performed as previously described.⁵ [³H]₂-BFI and [³H]₂clonidine (in the
- presence of rauwolscine) were used to label I_2 and I_1 receptors, respectively, and [³H]RX821002 was used to label α_2 -adrenergic receptors. Assay details have been described. Each assay was analyzed individually using GraphPad Prism version 3.03 for Windows, (GraphPad Software; San Diego, CA) and the IC $_{50}$ value determined. In the case of the I_2 and α_2 -adrenoceptor binding, this was then used to calculate the K_i using the method of Cheng and Prusoff. 15
- Cheng, Y. C.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.